Systematics and evolution of Syrphinae based on exon-capture sequencing

Ximo Mengual*¹, Christoph Mayer¹, Trevor O. Burt¹, Kevin M. Moran^{2,3}, Lars Dietz¹, Gaby Nottebrock¹, Thomas Pauli⁴, Andrew D. Young⁵, Marie V. Brasseur¹, Sandra Kukowka¹, Scott Kelso², Claudia Etzbauer¹, Sander Bot⁶, Martin Hauser⁷, Kurt Jordaens⁸, Gil F. G. Miranda², Gunilla Ståhls⁹, Wouter Van Steenis¹⁰, Ralph. S. Peters¹, and Jeffrey H. Skevington²

¹Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut zur Analyse des
Biodiversitätswandels, Adenauerallee 127, 53113 Bonn – Germany
 ²Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and
Nematodes, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6 – Canada
 ³Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 –
Canada

⁴Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg – Germany

 5 University of Guelph, School of Environmental Sciences, Guelph, Ontario – Canada 6 Kerklaan 30E, NL-9751 NN, Haren – Netherlands

⁷California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, California – United States

⁸Royal Museum for Central Africa, 4Joint Experimental Molecular Unit, Leuvensesteenweg 13, Tervuren – Belgium

⁹University of Helsinki, Finnish Museum of Natural History Luomus, Pohjoinen Rautatiekatu 13, 00100, Helsinki – Finland

¹⁰Vrouwenmantel 18, NL-3621 TR, Breukelen – Netherlands

Abstract

In the present study, we used high-throughput sequencing to capture and enrich exonic regions. With the help of the BaitFisher software, we developed a new bait kit (SYRPHI-DAE1.0) to target 1945 CDS regions belonging to 1312 orthologous genes. This new bait kit was successfully used to exon-capture the targeted loci in 121 flower fly species across the different syrphid subfamilies. We analyzed different amino acid and nucleotide data sets with the Maximum Likelihood and the Multispecies Coalescent approaches. Our analyses yielded highly supported similar topologies, although the degree of the SRH (global Stationarity, Reversibility and Homogeneity) conditions varied greatly between amino acid and nucleotide data sets. The sisterhood of subfamilies Pipizinae and Syrphinae is recovered in all our analyses, confirming a common origin of taxa feeding on soft-bodied arthropods. Based on our results, we redefine the tribe Syrphini stat.rev. and infer the origin of the Syrphidae using BEAST.

^{*}Speaker

Keywords: classification	target DNA	enrichment,	Syrphidae,	Syrphinae,	flower flies,	hover flies,	hoverflies, tribal